Patrick Doran

Sect: 1491

setType

Case 1: Set the type for a specific node

Input: Enum Type – Each node has to be of a specific type represented by an enumeration.

User Events:

1. Selects node to change the type.

2. Selects type from a drop down dialog box.

3. Presses ok to confirm the change. (cancel is an option)

Expected Output: The node’s type is changed to whatever the user selected.

Case 2: Type being set is null

Input; Enum Type- in this case is null

User Events:

1. Selects node to change the type.

2. User does not select a type.

3. Presses ok to confirm the change.

Expected Output: Error “Type is required”

validateEdge

Case 1: The edge is valid

Input: DirectedEdge edge – When an edge is created it must be validated.

User Events:

1. User selects a node.

2. Selects another node and attempts to link them.

3. The edge is created

Expected Output: Boolean True

Case 2: The Edge is invalid

(if a DirectEdge is not listed below it is invalid:

enzyme->reaction it catalyzes

reactant->reaction

reaction->compound

pathways->pathways)

Input: DirectedEdge edge

User Events:

1. Users selects a node

2. Selects another node and attempts to link them.

3. Edge is not created.

Expected Output: Boolean False (Error msg)

createNode

Case 1: User enters a valid name

Input: String nodeName – name the node

User Events:

1. User clicks the button to create a node.

2. A dialog box appears and they enter the name.

3. Press Ok and the name is now saved

Expected Output: A node is created with the name String

Case 2: User does not enter a name

Input: String nodeName – name of the node

User Events:

1. User clicks the button to create a node.

2. A dialog box appears and they do not enter a name.

3. User presses ok

Expected Output: No node is created (Error Message “Node must have a name”)

Stephen Workman

User Interface Testing
Sect.: 1491

Test Case 1:

User begins to run software and wishes to create a new file.

Upon the starting of the software the user is prompted what initial action they would like to perform. There are two options: open a previous file or create a new one. The input required from the user to create a new file will be the selection of 'Create New File'. When 'Create New File' is selected, the software will output a blank temp file in memory for current use. The GUI's display of the new blank file marks the end of this test case.

Input Summary: User selection of 'Create New File'
Output Summary: New temp file created/ displayed on screen

Test Case 2:

User has been working on a model and now wishes to exit the program.

User hits the 'Exit' button or 'Window Close' button. The system will then ask the user if they would like to save any open files. If no, then the program will simply exit. If yes, then the temp file (the working file) will be saved either to the original or a new file is created. When saving of open files is complete then the program will exit.

Input Summary: User hits 'Exit' or 'Window Close' button. If there are any open files the user selects whether they will save any or not.
Output Summary: If user is saving any files then appropriate dialog boxes are displayed to user. If no files need to be saved or saving is complete the system halts.

Test Case 3:

User wishes to insert a new node.

User selects 'Insert New Node'. The system then queries the user what type of node they would like to insert. The node is then inserted into the diagram/XML file. Once this is done the test is complete.

Input Summary: User selects 'Insert New Node'. User then selects which type of node to be inserted.
Output summary: System asks the user what type of node they'd like to insert. It then outputs this information to the diagram/ XML file.

David Scott

Sect: 1491

Testing 1

(User Interface & File I/O Cases)

Open

Test Case 1: Open valid xml file.

-Input Data: String filename - A String of an xml file name. The xml file is formatted properly.

-User Events:

1. user selects open file from menu on the UserInterface, and selects a file

2. the name of the file is passed to the open method

3. makeGraphfromXML method is called using the filename

4. makeGraphfromXML deciphers (parses) this file and constructs a DirectedGraph

5. this DirectedGraph is returned to the UserInterface for editing

-Expected Output: DirectedGraph graph

Test Case 2: Open invalid xml file.

-Input Data: String filename - A String of an xml file name. The xml file is not formatted properly.

-User Events:

1. user selects open file from menu on the UserInterface, and selects a file

2. file Validity is checked before going to open method, and an exception occurs

3. error message is displayed

4. user is returned to previous screen (the original gui)

-Expected Output: Error message.

Save

Test Case 3: The DirectedGraph does not correspond to the temporary file. (aka, The old file needs to be overwritten)

-Input Data: DirectedGraph graph

-User Events:

1. the user selects Save from the menu on the UserInterface

2. the save method in File I/O is called using the current name

3. makeXMLfromGraph is called using the name entered, and the current DirectedGraph being used.

4. makeXMLfromGraph takes the graph and writes xml formatted syntax to the file (it parses it to an xml file)

5. a success message is returned to save in File I/O

6. this success message is passed up to the UserInterface, which displays the message

-Expected Output: File file

Test Case 4: The DirectedGraph corresponds to the temporary file. (aka, A new file needs to be created)

-Input Data: String fileName, DirectedGraph graph

-User Events:

1. the user selects Save from the menu on the UserInterface

2. the file is found to be new

3. a message is displayed prompting the user to enter a file name

4. the save method in File I/O is called using the name entered

5. makeXMLfromGraph is called using the name entered, and the current DirectedGraph being used.

6. makeXMLfromGraph takes the graph and writes xml formatted syntax to the file (it parses it to an xml file)

7. a success message is returned to save in File I/O

8. this success message is passed up to the UserInterface, which displays the message

-Expected Output: File file

Save As

Test Case 5: The save fileName is new.

-Input Data: String fileName, DirectedGraph graph

-User Events:

1. the user selects Save As from menu on the UserInterface

2. the user is prompted to enter a file name

3. the save method in File I/O is called using the name entered

4. makeXMLfromGraph is called using the name entered, and the current DirectedGraph being used.

5. makeXMLfromGraph takes the graph and writes xml formatted syntax to the file (it parses it to an xml file)

6. a success message is returned to save in File I/O

7. this success message is passed up to the UserInterface, which displays the message

-Expected Output: File file

Test Case 6: The save fileName is already used.

-Input Data: String fileName, DirectedGraph graph

-User Events:

1. the user selects Save As from menu on the UserInterface

2. the user is prompted to enter a file name, and enters a name already in use

3. an exception is thrown, and an error message is displayed asking if the user wants to overwrite the current file

4. if they don’t then they are returned to the original GUI screen

5. if they do, then the program continues as follows

6. the save method in File I/O is called using the name entered

7. makeXMLfromGraph is called using the name entered, and the current DirectedGraph being used.

8. makeXMLfromGraph takes the graph and writes xml formatted syntax to the file (it parses it to an xml file)

9. a success message is returned to save in File I/O

10. this success message is passed up to the UserInterface, which displays the message

-Expected Output: File file, error message

McKenzie Petion

1159-2830

CEN 3031 sect #1491

Test Case 1

User selects the getName operation

GetName operation is selected. The variable v type vertex is passed in. v must be non-null. If the entry is null the user will be prompted to enter a non-null string. Once the entry has been processed the software will return the name of the enzyme that was searched for.

Input: v

Output: enzyme

Test Case 2

User selects getType operation

GetType operation is used. The variable v type vertex is passed in. v must be a non-null value. If the value that is entered is null then the software will ask the user to enter a value that is non-null. Once the software has processed the request it will return the type.

Input: v

Output: type

Test Case 3

User selects setName operation

The setName operation is used. A name of type string is passed in. The name must be a non-null entry and also not empty. If these two preconditions are not met then the software will prompt the user to enter a not empty and non-null entry. The name entry is now changed.

Input: name

Output: N/A(name is set)

makeGraphfromXML(file: File): DirectedGraph

Preconditions:
file must be an existing and valid XML file

Postconditions:
the directed graph will be non-null (though possibly empty)

4. Information This case will assure the proper functionality of File Input/Output by checking if the returned graph was initialized with the file information.

Name Graph Created

Purpose The code will verify that a DirectedGraph with the head node of the XML file has been returned upon exiting the function.

Dependencies There must be a DirectedGraph variable for the function to return a value and toString() should display all of its information.

5. Test case activity

Testing environment/configuration The environment requires the working directory for all file input/output operations to be readable.

Initialization A DirectedGraph object will be initialized

Finalization The information for the graph will be displayed to ensure that it received correct information from the XML file.

Actions Return the DirectedGraph to the variable, compare it to NULL, and display its contents.

Input data The String name of the XML file

6. Results

Expected results The display should show a graph with one full head node that matches the information in the XML file. If a DirectedGraph is not returned to the variable an exception of invalid types will be thrown and will display a message. If the NULL comparison fails, the graph information will not be displayed.

makeGraphfromXML(file: File): DirectedGraph

Preconditions:
file must be an existing and valid XML file

Postconditions:
the directed graph will be non-null (though possibly empty)

7. Information This case will assure the proper functionality of File Input/Output by checking if the returned graph matches with the XML file information.

Name Graph Correct

Purpose The code will verify that a DirectedGraph has all of the correct edges match up with the correct nodes in the XML file.

Dependencies There must be a DirectedGraph variable for the function to return a value and toString() should display all of its information. The Graph Created test must have been passed to move on to this step.

8. Test case activity

Testing environment/configuration The environment requires the working directory for all file input/output operations to be readable.

Initialization A DirectedGraph object received from the previous test.

Finalization The information for the graph will be displayed and compared with the components in the XML file to ensure orderliness of the graph.

Actions Compare each node and edge in the directed graph with the corresponding node data and edge data in the XML file. If the values do not match, then the test is failed.

Input data The DirectedGraph returned from the previous step and the XML file name.

9. Results

Expected results The display should show that the graph matches the node structure of the XML file and will return an “Incorrect” print statement if false. The Graph structure will also be printed to the screen for further debugging purposes to identify the problem if it exists.

new(): DirectedGraph

Preconditions:

Postconditions:
an empty file named temp.xml will be made and an empty graph will be

returned

10. Information This case will assure the proper functionality of File Input/Output by identifying the temporary file that is created after execution.

Name Temporary File Exists

Purpose The code will verify that a file named “temp.xml” has been created in the current working directory of the application.

Dependencies There must not be a file named “temp.xml” in the current working directory before executing the function, new().

11. Test case activity

Testing environment/configuration The environment requires the working directory for all file input/output operations to be readable/writable.

Initialization A file stream object will be needed to attempt to open the file.

Finalization The file stream should be closed to ensure that no other function is using the “temp.xml” file at the same time.

Actions Open the file, “temp.xml”, read it to make sure it is empty, and close the file.

Input data The String value of the name of the file which is “temp.xml”.

12. Results

Expected results Three print statements will appear that verify all of the 3 above actions were possible. If there was an error with any of them, an exception will be thrown displaying which action had failed.

new(): DirectedGraph

Preconditions:

Postconditions:
an empty file named temp.xml will be made and an empty graph will be

returned

13. Information This case will assure the proper functionality of File Input/Output by checking the returned value of the function.

Name Empty Graph Returned

Purpose The code will verify that an empty DirectedGraph has been returned upon exiting the function.

Dependencies There must be a DirectedGraph variable for the function to return a value and toString() should display all of its information. The Temporary File Exists test must have been passed to move on to this step.

14. Test case activity

Testing environment/configuration Only a main routine

Initialization A DirectedGraph object will be initialized

Finalization The information for the graph will be displayed to ensure that it has been recently initialized and is not null.

Actions Return the DirectedGraph to the variable, compare it to NULL, and display its contents.

Input data NULL

15. Results

Expected results The display should show an empty graph with one empty edge and one empty head node. If a DirectedGraph is not returned to the variable an exception of invalid types will be thrown and will display a message. If the NULL comparison fails, the graph information will not be displayed.

makeXMLfromGraph(file: File, graph: DirectedGraph)

Preconditions:
graph must be non-null

Postconditions:

16. Information This case will assure the proper functionality of File Input/Output by checking if the returned file was initialized with the Graph information.

Name XML Created

Purpose The code will verify that an XML file with the head node element of the graph has been returned upon exiting the function.

Dependencies There must be a File variable for the function to return a value and toString() should display its contents. The DirectedGraph cannot be NULL.

17. Test case activity

Testing environment/configuration The environment requires the working directory for all file input/output operations to be writable..

Initialization A File object will be initialized and graph will be compared to NULL.

Finalization The information for the XML file will be displayed to ensure that it received correct information from the graph.

Actions Open a File stream in the current directory, return the File to the object, compare it to NULL, and display its contents.

Input data The String name of the XML file and the current DirectedGraph

18. Results

Expected results The display should show an XML file with one full head node element that matches the information in the DirectedGraph. If a File is not returned to the object an exception of invalid types will be thrown and will display a message. If the NULL comparison fails, the graph information will not be displayed.

makeXMLfromGraph(file: File, graph: DirectedGraph)

Preconditions:
graph must be non-null

Postconditions:

19. Information This case will assure the proper functionality of File Input/Output by checking if the returned XML file matches with the DirectedGraph information.

Name XML Correct

Purpose The code will verify that the XML file has all of the correct edges matched up with the correct nodes in the DirectedGraph.

Dependencies There must be a File variable for the function to return a value and toString() should display its contents. The XML Created test must have been passed to move on to this step.

20. Test case activity

Testing environment/configuration The environment requires the working directory for all file input/output operations to be writable.

Initialization A File object and DirectedGraph received from the previous test.

Finalization The information for the XML file will be displayed and compared with the components in the DirectedGraph to ensure orderliness of the graph.

Actions Compare each node and edge in the XML file with the corresponding node data and edge data in the DirectedGraph. If the values do not match, then the test is failed.

Input data The returned File from the previous step and the DirectedGraph.

21. Results

Expected results The display should show that the File matches the element structure of the DirectedGraph and will return an “Incorrect” print statement if false. The XML file structure will also be printed to the screen for further debugging purposes to identify the problem if it exists.

